2. Gunakan metode seperti pada kegiatan ayo kita amati pada halaman 221 untuk menyelesaikan sistem persamaan berikut Yg nomor 2,,,,
Matematika
ekadia4
Pertanyaan
2. Gunakan metode seperti pada kegiatan ayo kita amati pada halaman 221 untuk menyelesaikan sistem persamaan berikut
Yg nomor 2,,,,
Yg nomor 2,,,,
1 Jawaban
-
1. Jawaban MathTutor
Kelas : 8
Mapel : Matematika
Kategori : Bab 4 - Sistem Persamaan Linier Dua Variabel
Kata Kunci : sistem persamaan linear dua variabel, metode substitusi
Kode : 8.2.4 [Kelas 8 Matematika Bab 4 - Sistem Persamaan Linier Dua Variabel]
Pembahasan :
Bentuk umum sistem persamaan linear dua variabel
ax + by = p
cx + dy = q
a, b, c, d ≠ 0 serta a, b, c, d, p, q ∈ R.
Penyelesaian dari sistem persamaan linear dua variabel adalah pasangan terurut (x₁, y₁).
Ada 3 kasus dalam sistem persamaan linear dua variabel, yaitu :
1. Jika [tex] \frac{a}{c} [/tex] ≠ [tex] \frac{b}{d} [/tex] dan kedua garis tersebut berpotongan, maka sistem persamaan linear dua variabel tersebut memiliki satu penyelesaian.
2. Jika [tex] \frac{a}{c} [/tex] = [tex] \frac{b}{d} [/tex] ≠ [tex] \frac{p}{q} [/tex] dan kedua garis tersebut sejajar, maka sistem persamaan linear dua variabel tersebut tidak memiliki penyelesaian.
3. Jika [tex] \frac{a}{c} [/tex] = [tex] \frac{b}{d} [/tex] = [tex] \frac{p}{q} [/tex] dan a, b, c, d, p, dan q tidak semuanya nol serta kedua garis tersebut berhimpit, maka sistem persamaan linear dua variabel tersebut memiliki tak hingga banyak penyelesaian.
Metode penyelesaiannya ada 4, yaitu :
1. metode grafik;
2. metode substitusi;
3. metode eliminasi;
4. metode gabungan eliminasi dan substitusi.
Mari kita lihat soal tersebut.
Soal belum lengkap, belum ditentukan metode penyelesaiannya. Ingat tidak semua memiliki buku pegangan sama. Oleh karena itu saya menyelesaikan menggunakan metode gabungan eliminasi dan substitusi.
a. Diketahui sistem persamaan
x + y = 3 ... (1)
x - y = 1 ... (2)
Persamaan (1) dan (2) kita eliminasi y, sehingga
x + y = 3
x - y = 1
________+
⇔ 2x = 4
⇔ x = [tex] \frac{4}{2} [/tex]
⇔ x = 2 ... (3)
Persamaan (3) kita substitusikan ke persamaan (1), diperoleh
x + y = 3
⇔ y = 3 - x
⇔ y = 3 - 2
⇔ y = 1
Jadi, penyelesaian dari sistem persamaan tersebut adalah (2, 1).
b. Diketahui sistem persamaan
-x + 3y = 0 ... (1)
x + 3y = 12 ... (2)
Persamaan (1) dan (2) kita eliminasi x, sehingga
-x + 3y = 0
x + 3y = 12
_________+
⇔ 6y = 12
⇔ y = [tex] \frac{12}{6} [/tex]
⇔ y = 2 ... (3)
Persamaan (3) kita substitusikan ke persamaan (1), diperoleh
-x + 3y = 0
⇔ 3y = x
⇔ 3(2) = x
⇔ x = 6.
Jadi, penyelesaian dari sistem persamaan tersebut adalah (6, 2).
c. Diketahui sistem persamaan
3x + 2y = 3 ... (1)
3x - 2y = -9 ... (2)
Persamaan (1) dan (2) kita eliminasi y, sehingga
3x + 2y = 3
3x - 2y = -9
__________+
⇔ 6x = -6
⇔ x = [tex] \frac{-6}{6} [/tex]
⇔ x = -1 ... (3)
Persamaan (3) kita substitusikan ke persamaan (1), diperoleh
3x + 2y = 3
⇔ 2y = 3 - 3x
⇔ 2y = 3 - 3(-1)
⇔ 2y = 3 + 3
⇔ 2y = 6
⇔ y = [tex] \frac{6}{2} [/tex]
⇔ y = 3
Jadi, penyelesaian dari sistem persamaan tersebut adalah (-1. 3).
Soal lain untuk belajar : https://brainly.co.id/tugas/8925999
Semangat!
Stop Copy Paste!